

Sébastien Combéfis (UCLouvain), Dimitra Giannakopoulou (NASA),
Charles Pecheur (UCLouvain), Peter Mehlitz (NASA)

A JavaPathfinder Extension to
Analyze Human Machine Interactions

HMI issues

§  automation surprises
–  non-determinism, mode confusion

§  system abstractions for human operators
–  user / pilot training, procedure generation, test-case generation

§  jpf-hmi
–  supports the definition of hmi systems
–  provides a number of hmi-specific analysis capabilities

HMI LTS of a countdown system

idle running
val=4

running
val=3

running
val=2

running
val=1

running
val=0

tick

tick

tick

tick

start

stop

stop

stop

stop

tau

command

unobservable

observation

mode1

mode2

jpf-hmi

SC2LTS

LTSLoader LTSLoader

FCCheck Bisim Learning

HMI LTS

XMIParser

JPF
.xmi .java

.txt .txt

true/false HMI LTS HMI LTS

other?

HMI system description

public class CountDown extends Model

 @Override
 public List<Action> getActions() {
 List<Action> actions = new ArrayList<Action>();
 actions.addAll(Arrays.asList (
 new Action(“start”, COMMAND),
 new Action(“stop”, COMMAND),
 new Action(“tick”, OBSERVATION)

));
 return actions;
 }

 public static class Behaviour extends State {
 private static final int MAX = 4;

 public class Idle extends State {
 public void start() ...
 }

 public class Running extends State {
 int val = 0;
 public void stop() ...
 public void tick() ...
 } ...

@Mode(“red”);

@Mode(“green”);

HMI analyses: behavioral abstraction

idle running
val=4

running
val=3

running
val=2

running
val=1

running
val=0

tick

tick

tick

tick

start

stop

stop

stop

stop

abstraction MU allows full
control of system MM if at
any time, when using the
system according to MU :
1.  the set of available

commands is exactly the
same for the two models

2.  abstraction allows at
least all the observations
that can be produced by
the system

HMI analyses during generation

idle running
val=4

running
val=3

running
val=2

running
val=1

running
val=0

tick

tick

tick

tick

start

stop

stop

stop

stop

tau

System model is not full
control deterministic :

CEX:[start, tick, tick,
tick, tick]

FC determinism

Mode confusion

Modes are self-loop transitions
treated like commands. If CEX
ends in mode action, then it
represents mode confusion.

where would we be without abstraction?
@FilterField

 public static class ValAbs1 extends AbstractionAdapter { public int getAbstractValue (int v) {
 if (v > 0) {
 return 0;
 } else if (v == 0) {
 return 1;
 }
 return -1;
 }

 public String getName (int v) {
 int i = getAbstractValue (v);
 return i == 0 ? "(>0)" : "(=0)";
 }

}

n

n

conclusions & extensions
more input sources / analyses / scalability, more users…

system vs mental models

§  system model describes complete behavior of a system
§  mental model describes user’s view of the system

3 5 4

2

0

a

b

c

c e

1

d d

0 1
a, b c

2

d d, e

§  user does not need to distinguish states with the same color
§  the focus of this work is to generate mental models automatically

full control mental model
§  what is a good mental model?

–  it should be as compact as possible
–  the user should have enough information to control the system

§  mental model MU allows full control of a system MM if at any
time, when using the system according to the mental model:
–  the set of available commands is exactly the same for the two models
–  the mental model allows at least all the observations that can be produced

by the system

3 5 4

2

0

a

b

c

c e

1

d d

0 1
a, b c

2

d ,e, f d

